Universida_{de}Vigo

Guía resumida para utilizar el microcontrolador CY7C68013

Camilo Quintáns Graña Miguel Ángel Domínguez Gómez Vigo, 2011

Índice

1. DESCRIPCIÓN DEL HARDWARE	3
1.1. Introducción	3
1.2. Recursos de memoria	4
1.3. Control de la CPU	4
1.4. Puertos de entrada/salida	5
1.5. Temporizadores	6
1.6. Interrupciones	7
2. DESCRIPCIÓN DEL SOFTWARE	8
2.1. Notas sobre la documentación	8
2.2. Pasos para crear un proyecto para realizar un programa del microcontrolador	8
3. PRÁCTICA EJEMPLO: UTILIZACIÓN DE LOS PERIFÉRICOS DEL	
MICROCONTROLADOR	1
3.1. Objetivos	1
3.2. Enunciado	1
3.3. Tareas del alumno previas a la asistencia al laboratorio	1
3.4. Tareas a realizar en el laboratorio	2
3.5. Solución programada en lenguaje C	3

1. DESCRIPCIÓN DEL HARDWARE

1.1. Introducción

Figura 1.1. Placa para realizar prácticas con el microcontrolador CY7C68013 con conexión USB y memoria EEPROM.

1	PD5/FD13	PD4/FD12	56
2	PD6/FD14	PD3/FD11	55
3	PD7/FD15	PD2/FD10	54
4	GND	PD1/FD9	53
5	CLKOUT	PD0/FD8	52
6	VCC	*WAKEUP	51
7	GND	VCC	50
8	RDY0/*SLF	RD RESET	49
9	RDY1/*SL\	WR GND	48
10	AVCC	PA7/*FLAGD/SLCS	47
11	XTALOUT	PA6/PKTEND	46
12	XTALIN	PA5/FIFOADR1	45
13	AGND	PA4/FIFOADR0	44
14	VCC	PA3/*WU2	43
15	DPLUS	PA2/*SLOE	42
16	DMINUS	PA1/INT1	41
17	GND	PA0/INT0	40
18	VCC	VCC	39
19	GND	CTL2/*FLAGC	38
20	IFCLK	CTL1/*FLAGB	37
21	RESERVE	D CTL0/*FLAGA	36
22	SCL (CY7C68013 GND	35
23	SDA 🛛	6-pin SSOP VCC	34
24	VCC	GND	33
25	PB0/FD0	PB7/FD7	32
26	PB1/FD1	PB6/FD6	31
27	PB2/FD2	PB5/FD5	30
28	PB3/FD3	PB4/FD4	29

Figura 1.2. Descripción de los terminales de entradas y salidas del microcontrolador CY7C68013.

1.2. Recursos de memoria

Figura 1.3. Mapa de la memoria interna de datos (256 bytes).

1.3. Control de la CPU

La velocidad de procesado se puede configurar programando los bits 3 y 4 del registro **CPUCS**, de acuerdo a la Tabla 1.1. Sin embargo, esto no es suficiente, para que tenga efecto dicho cambio, se debe incluir en los ficheros fuente del proyecto el archivo de biblioteca **ezusb.lib**, que se encuentra en el siguiente directorio:

C:\Cypress\USB\Target\Lib\FX2

CPUCS		CPU Control and Status								
b7	b6	b5	b4	b3	b2	b1	b0			
0	0	PORTCSTB	CLKSPD1	CLKSPD0	CLKINV	CLKOE	0			
R	R	R/W	R/W	R/W	R/W	R/W	R			
0	0	0	0	0	0	1	0			

Figura 1.4. Registro de control de la CPU.

Tabla	1.1.	Bits	para	configurar	la	frecuencia	del	reloj	de	la	CPU	J.
				6								

CLKSPD1	CLKSPD0	CPU Clock		
0	0	12 MHz (Default)		
0	1	24 MHz		
1	0	48 MHz		
1	1	Reserved		

Tabla 1.2.	Registros	especiales	del	microcontro	lador.

х	8x	9x	Ax	Bx	Cx	Dx	Ex	Fx
0	IOA	IOB	IOC	IOD	SCON1	PSW	ACC	В
1	SP	EXIF	INT2CLR	IOE	SBUF1			
2	DPL0	MPAGE	INT4CLR	OEA		1		
3	DPH0			OEB	1			
4	DPL1			OEC				
5	DPH1			OED				
6	DPS			OEE	1			
7	PCON				()	1	1	
8	TCON	SCON0	IE	IP	T2CON	EICON	EIE	EIP
9	TMOD	SBUF0						
Α	TLO	AUTOPTRH1	EP2468STAT	EP01STAT	RCAP2L			
В	TL1	AUTOPTRL1	EP24FIFOFLGS	GPIFTRIG	RCAP2H	i i		
С	TH0		EP68FIFOFLGS		TL2			
D	TH1	AUTOPTRH2		GPIFSGLDATH	TH2			
Ε	CKCON	AUTOPTRL2		GPIFSGLDATLX		<u></u>		
F			AUTOPTRSETUP	GPIFSGLDATLNOX				

1.4. Puertos de entrada/salida

Figura 1.5. Esquema de los puertos de E/S.

	Ta	bla	1.3.	Registros	de	habilitación	de	los	puertos	de	E/S
--	----	-----	------	-----------	----	--------------	----	-----	---------	----	-----

OEA		F	S	FR 0xB2			
b7	b6	b5	b4	b3	b2	b1	b0
D7	D6	D5	D4	D3	D2	D1	D0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

OEB		F	S	FR 0xB3			
b7	b6	b5	b4	b3	b2	b1	b0
D7	D6	D5	D4	D3	D2	D1	D0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

OED		Port D Output Enable								
b7	b6	b6 b5	b4	b3	b2	b1	b0			
D7	D6	D5	D4	D3	D2	D1	D0			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
0	0	0	0	0	0	0	0			

Tabla 1.4. Registros de datos de los puertos de E/S.

IOA		Po	S	SFR 0x80			
b7	b6	b5	b4	b3	b2	b1	ь0
D7	D6	D5	D4	D3	D2	D1	D0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
×	x	×	×	×	×	×	×

IOB		Po	rt B (Bit-A	S	FR 0x90		
b7	b6	b5	b4	b3	b2	b1	b0
D7	D6	D5	D4	D3	D2	D1	D0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
×	x	x	×	×	x	x	x

IOD		Po	rt D (Bit-A	Addressat	ole)	S	FR 0xB0
b7	b6	b5	b4	b3	b2	b1	ь0
D7	D6	D5	D4	D3	D2	D1	D0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
×	x	×	x	x	x	x	x

1.5. Temporizadores

Figura 1.6. Diagrama de bloques de los temporizadores 0/1 modos 0/1.

Bit	Function					
TMOD.7	GATE1 - Timer 1 gate control. When GATE1 = 1, Timer 1 will clock only when $\overline{INT1}$ = 1 and TR1 (TCON.6) = 1. When GATE1 = 0, Timer 1 will clock only when TR1 = 1, regardless of the state of $\overline{INT1}$.					
TMOD.6	C /T1 - Counter/Timer select. When C/T1 = 0, Timer 1 is clocked by CLKOUT/4 or CLKOUT/ 12, depending on the state of T1M (CKCON.4). When C/T1 = 1, Timer 1 is clocked by high- to-low transitions on the T1 pin.					
TMOD.5	M1 - Timer 1 mode select bit 1.					
TMOD.4	M0 - Timer 1 mode select bit 0.					
	M1M0Mode00Mode 0 : 13-bit counter01Mode 1 : 16-bit counter10Mode 2 : 8-bit counter with auto-reload11Mode 3 : Timer 1 stopped					
TMOD.3	GATE0 - Timer 0 gate control, When GATE0 = 1, Timer 0 will clock only when $\overline{INT0}$ = 1 and TR0 (TCON.4) = 1. When GATE0 = 0, Timer 0 will clock only when TR0 = 1, regardless of the state of $\overline{INT0}$.					
TMOD.2	$C/\overline{T0}$ - Counter/Timer select. When $C/\overline{T0} = 0$, Timer 0 is clocked by CLKOUT/4 or CLKOUT/ 12, depending on the state of T0M (CKCON.3). When $C/\overline{T0} = 1$, Timer 0 is clocked by high- to-low transitions on the T0 pin.					
TMOD.1	M1 - Timer 0 mode select bit 1.					
TMOD.0	M0 - Timer 0 mode select bit 0.					
	M1 M0 Mode 0 0 Mode 0 : 13-bit counter 0 1 Mode 1 : 16-bit counter 1 0 Mode 2 : 8-bit counter with auto-reload 1 1 Mode 3 : Two 8-bit counters					

Table 1 5	Desisters	TMOD	(0 - 00)	\ .1 -	a a se fi a se se	:	1.1	4	a mi ma da .	
	Registro		(UX A9) ae	coninging	acton	aer	iemp	orizadoi	£
1 uoiu 1.0.	itegibuo	111100	(0110)	,	company	401011	avi	comp	onLado	••

Bit	Function
TCON.7	TF1 - Timer 1 overflow flag. Set to 1 when the Timer 1 count overflows; automatically cleared when the FX2 vectors to the interrupt service routine.
TCON.6	TR1 - Timer 1 run control. 1 = Enable counting on Timer 1.
TCON.5	TF0 - Timer 0 overflow flag. Set to 1 when the Timer 0 count overflows; automatically cleared when the FX2 vectors to the interrupt service routine.
TCON.4	TR0 - Timer 0 run control. 1 = Enable counting on Timer 0.
TCON.3	IE1 - Interrupt 1 edge detect. If external interrupt 1 is configured to be edge-sensitive (IT1 = 1), IE1 is set when a negative edge is detected on the $\overline{INT1}$ pin and is automatically cleared when the FX2 vectors to the corresponding interrupt service routine. In this case, IE1 can also be cleared by software. If external interrupt 1 is configured to be level-sensitive (IT1 = 0), IE1 is set when the $\overline{INT1}$ pin is 0 and automatically cleared when the INT1 pin is 1. In level-sensitive mode, software cannot write to IE1.
TCON.2	IT1 - Interrupt 1 type select. $\overline{INT1}$ is detected on falling edge when IT1 = 1; $\overline{INT1}$ is detected as a low level when IT1 = 0.
TCON.1	IEO - Interrupt 0 edge detect. If external interrupt 0 is configured to be edge-sensitive (IT0 = 1), IE0 is set when a negative edge is detected on the INT0 pin and is automatically cleared when the FX2 vectors to the corresponding interrupt service routine. In this case, IE0 can also be cleared by software. If external interrupt 0 is configured to be level-sensitive (IT0 = 0), IE0 is set when the INT0 pin is 0 and automatically cleared when the INT0 pin is 1. In level-sensitive mode, software cannot write to IE0.
TCON.0	IT0 - Interrupt 0 type select. $\overline{INT0}$ is detected on falling edge when IT0 = 1; $\overline{INT0}$ is detected as a low level when IT0 = 0.

Tabla	16	Dogistro	TCON	(0, -90)	da	control	dal	tomporizodor	•
1 abia	1.0.	Registro	TCON	(0100)	ue	control	uei	temporizadoi	٠

1.6. Interrupciones

FX2 Interrupt	Source	Interrupt Vector	Natural Priority
IE0	INTO Pin	0x0003	1
TF0	Timer 0 Overflow	0x000B	2
IE1	INT1 Pin	0x0013	3
TF1	Timer 1 Overflow	0x001B	4
RI_0 & TI_0	USARTO Rx & Tx	0x0023	5
TF2	Timer 2 Overflow	0x002B	6
Resume	WAKEUP / WU2 Pin or USB Resume	0x0033	0
RI_1 & TI_1	USART1 Rx & Tx	0x003B	7
USBINT	USB	0x0043	8
I ² CINT	I ² C-Compatible Bus	0x004B	9
IE4	GPIF / FIFOs / INT4 Pin	0x0053	10
IE5	INT5 Pin	0x005B	11
IE6	INT6 Pin	0x0063	12

Tabla 1.7. Interrupciones del FX2.

Nota: Hay que tener en cuenta que el terminal de entrada para de interrupción 0 es el bit 0 del puerto A (**PA.0**), tal y como se muestra en la Figura 1.2.

Bit	Function
IE.7	EA - Global interrupt enable. Controls masking of all interrupts except USB wakeup (resume). EA = 0 disables all interrupts except USB wakeup. When EA = 1, interrupts are enabled or masked by their individual enable bits.
IE.6	ES1 - Enable Serial Port 1 interrupt. ES1 = 0 disables Serial port 1 interrupts (TI_1 and RI_1). ES1 = 1 enables interrupts generated by the TI_1 or RI_1 flag.
IE.5	ET2 - Enable Timer 2 interrupt. ET2 = 0 disables Timer 2 interrupt (TF2). ET2=1 enables interrupts generated by the TF2 or EXF2 flag.
IE.4	ES0 - Enable Serial Port 0 interrupt. ES0 = 0 disables Serial Port 0 interrupts (TI_0 and RI_0). ES0=1 enables interrupts generated by the TI_0 or RI_0 flag.
IE.3	ET1 - Enable Timer 1 interrupt. ET1 = 0 disables Timer 1 interrupt (TF1). ET1=1 enables interrupts generated by the TF1 flag.
IE.2	EX1 - Enable external interrupt 1. EX1 = 0 disables external interrupt 1 (INT1). EX1=1 enables interrupts generated by the $\overline{INT1}$ pin.
IE.1	ET0 - Enable Timer 0 interrupt. ET0 = 0 disables Timer 0 interrupt (TF0). ET0=1 enables interrupts generated by the TF0 flag.
IE.0	EX0 - Enable external interrupt 0. EX0 = 0 disables external interrupt 0 (INT0). EX0=1 enables interrupts generated by the INT0 pin.

Tabla	1.8.	Registro	de	habilita	ción	de	las	interru	pciones	del	FX2.

2. DESCRIPCIÓN DEL SOFTWARE

2.1. Notas sobre la documentación

Para programar el microcontrolador se utiliza el programa **EZ-USB Control Panel** con la opción FX2.

Una vez instalado el programa μ Vision2 (de la empresa Keil Software, Inc.), en el directorio C:\Keil\C51\HLP, se encuentra el archivo GS51.pdf del manual de usuario. En este manual se debe estudiar, principalmente, el Capítulo 4, que explica cómo crear un proyecto, y los capítulos 6 y 7, relativos a cómo usar el depurador.

En el mismo directorio C:\Keil\C51\HLP también se encuentran los manuales de programador en lenguaje ensamblador (fichero A51.pdf) y en lenguaje C (fichero C51.pdf).

Por otro lado, en el directorio C:\Cypress\USB\Doc\FX2, se encuentra el archivo FX2 TechRefManual.pdf del manual del microcontrolador.

2.2. Pasos para crear un proyecto para realizar un programa del microcontrolador

1.- Ejecutar el programa mediante la orden **Inicio/Todos los programas/Keil uVision2** y crear un nuevo proyecto con la opción **Proyect/Nex Projet**. Luego, en el fichero de codificación del programa, incluir en la cabecera las siguientes directivas de compilación:

En el caso de que se programe se codifique en lenguaje ensamblador:

\$NOMOD51 ; Inhibe registros del 8051 predefinidos \$INCLUDE (fx2regs.inc) En el caso de que se codifique en lenguaje C: #include "Fx2.h"

#include "Fx2regs.h"

- Salvar el archivo del código fuente con extensión .c si se codifica en lenguaje C, y con extensión .A51 si se codifica en ensamblador.
- Fijarse si el módulo fuente (el archivo con el programa) está en la ventana del manejador de proyectos de **uVision2**, si no es así, añadirlo con la opción **Add Files to Group**.

2.- En la opción **Project/Select Device for Target 'Target 1'** seleccionar el dispositivo **EZ-USB FX2** (Figura 2.1).

Select Device for Target 'Target 1'		? 🗙
CPU Vendor: Cypress Semiconductor Device: EZ-USB FX2 (CY7C68000) Family: MCS-51	□ Use L×51 instead of BL51 □ Use A×51 instead of A51	
Data base	Desgription: 8051 bases USB 2.0 controller, two UART's, Dual DPTR, 401/0 lines, 3 Timers/Counters, 41 Interrupts / 6 priority levels, 256 Bytes on-chip RAM, 8KB on-chip program RAM, 4KB on-chip USB Endpoint RAM, with master/slave, or programmable (GPIF) control	<.
	Aceptar Cancelar	

Figura 2.1

3.- En la opción: **Project/Options for Target 'Target 1'/Target** configurar la frecuencia del reloj (Figura 2.2) y, en la opción **Project/Options for Target 'Target 1'/Output** activar la orden de generar el fichero de salida **.hex**.

Options for Targe	t 'Target 1'		?×
Target Output Lis	ting C51 A51 BL51 Locate B	L51 Misc Debug	
Cypress Semiconduc	stor EZ-USB FX2 (CY7C68XXX)		
	∐tal (MHz): 48.0		
Memory Model:	Small: variables in DATA		
Code Rom Size:	Large: 64K program 💌	🔲 Use multiple DPTR registers	
Operating system:	None	Use On-chip XRAM (0x0-0x3FF)	
Off-chip Code me	Mory Start: Size: Eprom Eprom Eprom Eprom Eprom	Off-chip Xdata memory Start: Size Ram Ram Ram Ram Ram Ram Ram Ram Ram Ram	
Code Banking Banks: 2	Start: End: Bank Area: 0x0000 0x10000	Xdata Banking Start: En Banks: 2 2 Bank Area: 0x0000 0x000	d:
	Aceptar Ca	ncelar Defaults	

Figura 2.2

Guía resumida para utilizar el microcontrolador CY7C68013

Options for Target 'Target 1'
Target Output Listing C51 A51 BL51 Locate BL51 Misc Debug
Select Folder for Objects
✓ Debug Information ✓ Browse Information
Create HEX File HEX Format: HEX-80 Start: End:
C Create Library: .\practica9.LIB
After Make
Image: When Complete □ Start Debugging
Run User Program #1: Browse
Run User Program #2: Browse Browse
Aceptar Cancelar Defaults

Figura 2.3

4.- En la opción **Project/File Extensions, Books and Enviroment/Enviroment setup** añadir la siguiente ruta de los archivos de las bibliotecas del dispositivo (Figura 2.4):

C:\Cypress\USB\Target\Inc\

Setup File Extensions, Books and Environment		? 🔀	
File Extensions A	dd Books Environment Setup		
	Use Settings from TOOLS.INI		
<u>B</u> IN Folder:	C:\Keil\C51\BIN\		
INC Folder:	C:\Cypress\USB\Target\Inc\;C:\Keil\C51\INC\		
<u>L</u> IB Folder:	C:\Kei\C51\LIB\		
<u>R</u> egfile Folder:			
Aceptar Cancelar			

Figura 2.4

5.- Conectar al puerto USB la placa del microcontrolador y ejecutar el programa:

Inicio/Todos los programas/Cypress/EZ-USB Control Panel

Y, con la opción **Download** descargar el archivo **.hex** generado en el paso anterior (Figura 2.5).

🚭 EZ-USB Control Panel - [Ezusb-0]			
🕰 Eile Edit Yiew Options Iools Window Help	_ 8 ×		
Image: Second state Open All Target FX2 GPIF			
Get Pipe Info			
Get Dev Get Conf Get Pipes Get String Download Re-Load EEPROM URB Stat HOLD RUN			
Vend Req Req 0xA2 Value 0x0000 Index 0xBEEF Length 16 Dir 1 IN V Hex Bytes B0 47 05 80 00 0	0 -		
Iso Trans Pipe Packets 128 Size 16 Buffers 2 Frames / Buffer 8			
Bulk / Int Pipe Length 64 Hex Bytes 5 Bulk Long	γP		
ResetPipe AbortPipe FileTrans Pipe Set IFace Interface O AltSetting O			
EZ-USB Control Panel - built 11:31:58 Sep 17 2002 Get PipeInfo Interface Size 16 			
For Help, press F1			

Figura 2.5. Interfaz del panel de control del microcontrolador.

3. PRÁCTICA EJEMPLO: UTILIZACIÓN DE LOS PERIFÉRICOS DEL MICROCONTROLADOR

3.1. Objetivos

El objetivo de esta práctica es que el alumno aprenda a programar un microcontrolador y a controlar dispositivos externos mediante consulta e interrupción. Para alcanzar estos objetivos se siguen los siguientes pasos:

Primero se debe realizar un programa de control mediante el microcontrolador que cumpla las especificaciones del enunciado de la práctica. A continuación, se simula su funcionamiento con el software μ Vision2 en modo *debugger*. Y, una vez simulado y comprobado su correcto funcionamiento, se conectan en la placa de prototipos los periféricos necesarios para realizar físicamente el control propuesto y, finalmente, se programa el microcontrolador y se verifican las especificaciones.

3.2. Enunciado

Se desea realizar en un microcontrolador un programa de control sencillo para iluminar secuencialmente una serie de 4 LEDs. El microcontrolador debe tener habilitada una interrupción externa de forma que cuando se reciba un pulso en el terminal correspondiente a dicha interrupción, el programa debe atenderla activando un contador que realizará una cuenta ascendente desde 0 hasta 9. Una vez que el contador llega a 9 el microcontrolador seguirá con el programa principal de encendido de LEDs en el punto donde lo había dejado.

En esta práctica se utilizará el microcontrolador EZ-USB FX2 de 56 terminales de la firma CYPRESS, que es una versión extendida del microcontrolador 8051. Para programar el microcontrolador se utilizará el software μ Vision2 de la firma KEIL, que es un entorno de desarrollo de programas para la familia de microcontroladores MCS-51. La programación se puede realizar tanto en lenguaje ensamblador como en lenguaje C.

3.3. Tareas del alumno previas a la asistencia al laboratorio

El alumno debe realizar las siguientes tareas antes de asistir al laboratorio:

- Lectura de la documentación sobre el microcontrolador.
- Estudio del diseño y la programación del microcontrolador.
- Estudio del manejo de interrupciones.

3.4. Tareas a realizar en el laboratorio

Se comienza por realizar el montaje del hardware. En la Figura 3.1 se muestra una fotografía de la placa de prototipos con los circuitos y conexiones correspondientes a la práctica.

Figura 3.1. Fotografía de la placa de prototipos con los circuitos de la practica.

En la esquina superior izquierda se encuentra la placa de periféricos digitales y, a su derecha, la placa del microcontrolador. Se observa como se conectan los 4 bits altos del puerto A los LEDs con una resistencia en serie. Los cuatro bits de menor peso del puerto B a las entradas A, B, C y D de la placa de periféricos correspondientes al display. Y la interrupción generada con la salida del generador de pulsos manuales (salida P de la placa de periféricos) a la entrada de interrupciones del microcontrolador (bit 0 del puerto A).

3.5. Solución programada en lenguaje C

```
#include "Fx2.h"
#include "Fx2regs.h"
unsigned char contador;
// función que realiza un retardo de 1 segundo
void retardo (void)
{
   int i=0;
   // realizar un bucle para que se realicen 100 temporizaciones (1 segundo)
   for (i=0; i<100; i++)
       ł
           TL0 = 0xEF; // Cargar el valor inicial del temporizador en los registros TL0 y TH0 para que
          TH0 = 0xD8; // cuente hasta 10.000 microsegundos
          TCON = 0x11; // iniciar la temporización del temporizador 0
           do
              } while (TF0 == 0);
       }
}
// función que atiende la interrupción 0 (pin PA.0)
void interrup0 (void) interrupt 0
{
   IOB = 0x00; //se inicializa el puerto B
   contador = 0:
   // se realiza un contaje de 0 a 9 con un retardo de 1 segundo entre cada incremento
   // y se asigna el valor del contador al puerto B
   do
      retardo ();
    {
       contador++;
       IOB = contador;
   while (contador < 9);
}
//Programa principal
main (void)
{
   unsigned int i=0;
   IT0 = 1; // Interrupción externa 0 se activa en el flanco de bajada
   EX0 = 1; // Desinhibe interrupción externa 0
   EA = 1; // Desinhibe globalmente todas las interrupciones
   OEB = 0x0F; // Selección de los 4 bits de menor peso del puerto B como terminales de salida
   OEA = 0xF0; // Selección de los 4 bits de mayor peso del puerto A como terminales de salida
   IOB = 0x00; // Inicialización del puerto B
   TMOD = 0x01; // Selección del modo 1 (temporizador de 16 bits) para el temporizador 0
   // bucle para ir encendiendo secuencialmente 4 leds con un retardo de 1 segundo
   while (1)
       \{ IOA = 0x10; \}
           retardo ();
           IOA = 0x20;
           retardo ();
          IOA = 0x40;
```

retardo (); IOA = 0x80;retardo (); }

}